青藏高原更新世黄土磁化率与磁地层与主要高原气候变化事件

青藏高原更新世黄土磁化率与磁地层与主要高原气候变化事件

一、青藏高原更新世黄土磁化率和磁性地层与高原重大气候变化事件(论文文献综述)

陈梓炫,杨军怀,王树源,吕镔,杨胜利,夏敦胜[1](2021)在《川西高原黄土—古土壤序列环境磁学研究最新进展与展望》文中指出川西高原堆积的黄土—古土壤序列是青藏高原东部地区良好的古气候记录载体,记录了不同时间尺度的古环境变化,对揭示印度季风和高原季风的演化历史及其驱动机制,理解青藏高原隆升效应与周边大气环流之间的关系具有重要意义。相比黄土高原,川西高原黄土环境磁学研究相对薄弱,亟需厘清黄土的磁学性质、磁化率增强机制、成壤过程中磁性矿物的生成、转化机制及其与环境因子之间的响应关系,明确磁学参数的环境意义。本文全面评述了川西黄土环境磁学进展,回顾和总结川西高原黄土的磁性矿物的类型、浓度、粒径等磁学特征及其影响因素和磁学参数的古环境意义,并对存在的问题进行讨论,以期推动青藏高原东部黄土的环境磁学研究及其在古环境和古气候中的应用。

李乐意,常宏,关冲,陶亚玲,沈俊杰,秦秀玲,权春艳,常小红[2](2021)在《青藏高原新生代古高度研究:现状与展望》文中研究说明青藏高原新生代古高度研究是地球系统科学研究中的一个热点、难点和重点,它是解决地球深部动力学、地貌地形演化和气候变化等各部分相互关系的一个关键突破口。目前以古生物和氧同位素为代表的各种古高度计被用来重建青藏高原新生代的古高度历史,但是不同的研究方法所得到的结果并不一致,关于青藏高原何时隆升到现在的海拔高度存在晚上新世、晚中新世和始新世等不同认识。因为古高度结果的差异,所以对于青藏高原新生代的构造隆升过程和动力机制也存在大的争议。本文首先详细的阐述了部分古高度计的应用原理及其各自的优缺点,收集总结了77条青藏高原新生代古高度研究的成果,梳理了目前青藏高原新生代古高度研究的历史和现状。然后在此基础上讨论了目前高原古高度研究的特点和存在的问题,即地层年代学、氧同位素和古生物古高度计结果的协调、"以点带面"、区域研究程度差异较大、替代性指标的多解性、古纬度影响、地质时期温度递减率的不确定性、全球气候变化的影响等特点和问题。最后就存在的特点和问题指出在恢复青藏高原新生代古高度时所需要完善和注意的方面,其中最重要的是注重地层年代学的可靠性。

刘硕,迟云平,郝冬梅,谢远云,康春国,吴鹏[3](2021)在《中更新世以来松嫩平原夏季风演化:来自哈尔滨黄土的磁化率、地球化学和总有机碳记录》文中研究说明哈尔滨黄土位于松嫩平原东北部,处于欧亚大陆中纬度干旱—半干旱地带的东部边缘,是季风和非季风区的过渡地带,对季风气候的变化非常敏感。然而,由于沉积档案露头的缺乏,使得该地区的气候变化研究极为薄弱。为此,我们对哈尔滨黄土进行了磁化率、总有机碳(TOC)和地球化学测试,并结合小波分析,对松嫩平原中更新世以来的夏季风演变及其控制机制进行研究。结果表明,中更新世以来松嫩平原的夏季风演化分为两个阶段:1) 460~180 ka时期,哈尔滨黄土较低的化学风化程度和TOC值指示了弱的夏季风强度;另外,在此时期还存在3个次一级的夏季风的微弱增强,叠加在夏季风强度偏弱这一大趋势之上。2) 180 ka~至今,哈尔滨黄土—古土壤序列的磁化率、化学风化程度和TOC值呈现出逐渐增大的趋势,表明东亚夏季风强度逐渐增强。通过哈尔滨黄土与邻区赤峰黄土和黄土高原洛川黄土的磁化率和粒度综合对比分析,表明松嫩平原首先响应间冰期夏季风主导的温度升高及降水增加带来的气候变化,但这种响应的持续时间偏短;哈尔滨黄土记录了360~340 ka和280~250 ka两次显着的夏季风减弱的气候现象,这是全球气候和区域环境变化综合作用的结果。小波分析结果表明,哈尔滨黄土—古土壤序列磁化率小波变换的主导周期为98 ka(100 ka),结合海平面温度、全球CO2浓度、60°N太阳辐射量、深海氧同位素综合对比分析,表明松嫩平原夏季风演化主要受全球冰量驱动;36 ka和44 ka(40 ka)倾角周期以及最低振荡29 ka周期的出现,表明倾角驱动的低纬太阳辐射变化对松嫩平原夏季风起到微弱调控作用,而岁差驱动的低纬太阳辐射变化对松嫩平原影响较小。

史运坤[4](2021)在《门源盆地黄土记录的古环境演化》文中研究表明门源盆地位于青藏高原东北部的边缘区,既是青藏高原和黄土高原的过渡地带,又是现代东亚季风区和中纬度西风区的交汇区域,地理位置特殊,是研究气候变化和地表响应极佳的实验场所,但是该区域研究工作极少,年代记录缺乏,因此本文选择门源盆地风成黄土剖面和其他辅助剖面作为重建古环境的载体研究该区域环境演化过程。本研究选择门源盆地YHC黄土剖面和其他9个辅助剖面开展了石英光释光测年,建立可靠的年代框架。结合古气候代用指标磁化率、粒度、色度、SOC、元素地球化学的分析,重建了门源盆地39 ka以来的环境变化过程。最后,通过对比全新世西风区及东亚季风区已有气候记录,探讨了门源盆地全新世气候变化的驱动机制。基于以上研究获得如下新的认识:(1)YHC黄土剖面中大量指标对门源盆地环境变化过程的指示意义相似,但在细节上存在些许差异,因此研究区域环境演化过程需要选用多种指标进行综合对比才能获取更准确的信息。(2)通过高密度OSL建立门源盆地39~0 ka的年代框架,在35~24 ka和21~14 ka有两处明显的地层缺失,应为侵蚀间断,由冰川作用和风力侵蚀导致。(3)整合多种环境指标,重建39 ka以来门源盆地古环境演化,可分7阶段:39~35 ka气候由暖湿向干冷转化,气候波动幅度增大;35~24 ka,地层缺失;24~21 ka气候达到最干冷期,冰川作用强烈,导致地层侵蚀,冰碛沉积、冰水沉积等特殊事件频发;21~14 ka,气候改善,冰川消退,冲洪积事件频发,风力强劲,地层受到侵蚀;14~8.5 ka,气候趋于暖湿化,降水显着增加,冲洪积事件频发,8.5ka达到最暖湿期;8.5~4 ka,气候最暖湿期;4~0 ka,气候由最暖湿向干旱化变化。(4)对比青藏高原东北部和东亚季风区、中纬度西风区的环境过程,该地区全新世气候变化主要由东亚季风所控制,同时也受中纬度西风的影响。

张哲[5](2021)在《基于地貌学方法分析太行山南段第四纪构造活动特征》文中研究说明地貌形成受控于区域构造活动,区域地貌的变形结果可以反映区域构造活动与演化历史。太行山南段位于黄土高原和华北平原的过渡区域,处于地质构造较为复杂的区域,新生带以来受到太平洋板块和印度板块等俯冲的双重影响,构造活动强烈,对地貌具有控制作用,区域形成大规模的断陷活动,形成多期次层状地貌,发育一系列NNE向断裂,并构成一条显着的地震活动带,历史上发生过1830年磁县71/2级地震。该地区长时间没有大震发生,缺少关注度,尤其是对第四纪以来太行山南段的隆升幅度、期次还有些争议,晋获断裂中南段的活动性研究还不充分。为了研究太行山南段构造地貌的差异,本文通过室内遥感解译以及GIS平台,利用多种地貌指数对该区域地貌演化阶段进行了探讨;通过宏观的地形参数(坡度及坡谱、粗糙度、切割度、起伏度)、河流地貌参数(HI指数)以及条带状剖面分析了太行山南段的宏观构造地貌;通过遥感影像解译和无人机遥感数据、野外的阶地调查以及前人研究资料对太行山南段沁河、丹河、漳河、露水河、淇河、淅水河、子房河和平甸河的河流阶地的发育级数、拔河高度和年龄进行了限定,建立了太行山南段阶地形成时代框架,探讨了太行山南段第四纪以来构造活动之间的关系;基于遥感影像解译、无人机飞行、DEM数据分析、野外的实地调查、钻孔信息以及前人的研究,对晋获断裂中南段的活动性进行了研究分析,获得了以下认识:(1)太行山南段的坡度、粗糙度、切割度、起伏度在太行山南段东侧呈现高值,高值区域与太行山东麓断裂走向具有一致性,显示出断裂对地貌的的控制作用;太行山南段流域HI值指示太行山南段地貌处于幼年-壮年发展阶段,整体构造处于活跃阶段。(2)太行山南段在1.7Ma至少发生了3期6个阶段的构造隆升事件,即早更新世晚期、中更新世和晚更新世,6个阶段分别为1.7Ma、0.8Ma、0.1Ma、0.07Ma、0.05Ma和0.03Ma。1.7Ma以来隆升速率逐步加快,2.6Ma以来太行山南段平均抬升了166~285m,最大不超过300m,因此,第四纪并不是太行山南段主要隆升阶段。(3)晋获断裂中段走向NNE,为一条正断层,上新世以来断距约500m,活动速率为0.09mm/a,根据钻孔信息和断层剖面信息,断裂早更新世活动较强,中晚更新世以来活动减弱;晋获断裂南段走向NNE,为一条正断层,早更新世活动剧烈,中晚更新世活动较弱。

柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊[6](2021)在《青藏高原东北缘晚更新世以来环境变化研究进展》文中研究表明青藏高原东北缘作为响应东亚季风边缘区环境变化的理想场所,其丰富的沉积记录可反映详细的环境变化过程。重点对近30年来青藏高原东北缘沉积与环境演化研究中的年代学、环境代用指标、环境演化过程及区域一致性等方面的主要研究进展进行总结。青藏高原东北缘环境研究中粒度、磁化率、碳酸盐含量和以总有机碳、常微量元素为主的地球化学指标是最常用的研究手段;综合区域晚更新世以来沉积环境研究结果,将高原东北缘环境演化过程分成5个阶段,即在东亚季风和西风环流的共同影响下经历了温暖湿润—寒冷干燥—温暖偏湿—偏冷干燥转温凉偏湿—相对温湿转相对冷干的发展阶段;而青藏高原东北缘气候记录与亚洲区域及全球记录对比结果显示具有区域性,其主要因素可能是北半球太阳辐射变化的驱动所导致的高纬度温度和冰量变化以及北大西洋温盐环流的影响;青藏高原东北缘晚更新世可能存在两期大范围的高湖面,分别在MIS 3和MIS 5阶段,其时间的差异显示从高原内部向东北方向高湖面出现的时间逐渐变年轻,可能反映了高原东北缘构造与环境变化的响应。综合认为,未来青藏高原东北缘环境研究重点可从高分辨率沉积序列的建立、高湖面时间的确立以及更精确的环境代用指标应用等方面进一步深入研究,以期获得更高分辨的环境变化信息。

苗青[7](2021)在《柴达木盆地大浪滩地区上新世以来的碳氧同位素记录及古环境研究》文中指出大浪滩位于青藏高原的东北缘,柴达木盆地的西部,是盆地重要的盐类沉积中心,其盆内沉积物深受构造运动和全球气候变化的控制,详尽地记录了柴达木盆地的气候环境演化历史以及青藏高原隆升在本地区的响应。本研究选取柴达木盆地西部较早进入成盐期的大浪滩地区干盐湖为研究对象,借助于黑ZK-01钻孔岩芯等资料,在较高分辨率古地磁测年基础上,探讨上新世以来该地区碳酸盐碳氧同位素所指示的气候环境演化信息,辅以其他古气候古环境代用指标(岩性、孢粉等)的综合对比分析,重建研究区上新世以来的古气候古环境演化规律,并关注古气候突变事件在本地区的响应;同时与大浪滩地区其他钻孔岩芯记录和长时间尺度典型气候变化记录进行对比分析,得到以下结论:1.通过对黑ZK-01钻孔沉积样品的古地磁年代测试,建立了黑ZK-01孔的年代标尺,即B/M界限深度为147m,M/G界限深度为694m。2.本研究主要采用湖泊自生碳酸盐碳氧同位素指标。从结果来看,δ18O值与δ13C值的整体变化趋势比较一致,都为逐渐偏重。其中δ18O值的指示意义比较明确,指示了湖泊蒸降比的变化。δ13C值则受多种因素影响,其值高低不仅湖泊盐度有关,还与总溶解无机碳(TDIC)与大气CO2的交换程度有关。3.以古地磁年代框架为基础,通过钻孔沉积物碳酸盐碳氧同位素分析,结合岩性和孢粉资料,将该孔的古气候古环境演化分为六个阶段:在4.553-3.596 Ma B.P.期间,大浪滩地区气候为相对温湿,但4 Ma B.P.之后开始有向温暖偏干转变的趋势;在3.596-2.581 Ma B.P.期间,气候逐步偏干,并于第四纪到来之前就开始沉积蒸发岩矿物石膏;在2.581-1.778 Ma B.P.期间,气候温暖偏湿,并从持续沉积的蒸发岩层可以看出,沉积环境逐步趋于稳定,整体上较为温暖,但有小尺度的干旱事件发生;在1.778-1.072 Ma B.P.期间,干旱程度进一步加强,蒸发岩矿物石盐和石膏都大量沉积,表现为温偏干的沉积环境;在1.072-0.781 Ma B.P.期间,沉积环境持续干旱化,蒸降比变高,温度呈下降趋势,气候表现出较为明显的冷暖交替,但仍然以干旱化为主;在0.781-0.267 Ma B.P.期间,中更新世以来,气候干旱程度进一步加强,湖泊萎缩,进入盐湖阶段,总体表现为冷干的气候特征。4.通过将黑ZK-01孔岩芯沉积物所记录的气候环境变化与ZK-336孔和梁ZK-02孔的岩芯沉积物记录进行对比,发现它们之间有很好的可比性,并探讨了该地区的气候环境变化对青藏高原隆升的响应。5.通过与洛川黄土-古土壤气候曲线和LR04δ18O标准曲线的对比,识别出的多次氧同位素特征事件,但也有其特殊性,表明盆地气候变化除反映了全球性气候变化外,也反映了青藏高原隆升对盆地气候变化的影响而有其区域性特征。

闫纪元[8](2021)在《运城盆地及北侧孤山晚新生代构造-沉积与隆升-剥蚀过程研究》文中认为新生代以来,受青藏高原的隆升以及太平洋向西俯冲的影响,中国地貌格局发生重大变化,由中生代时期东高西低的地貌态势逐步演化形成西高东低的三级阶梯地貌。华北西部鄂尔多斯周缘形成环鄂尔多斯地堑系,包括鄂尔多斯西缘银川-吉兰泰断陷盆地、北缘河套盆地、南缘渭河盆地及东缘山西地堑系。这些地堑的一个共同的特点是在很短的时间内沉积了巨厚的新生代地层,其中银川盆地新生代地层最厚处达7000 m,河套盆地最厚处达14800 m,渭河地堑最厚处达8000 m,山西地堑系最厚处达5000 m。鄂尔多斯盆地东缘的山西地堑系与其他几个边缘裂陷不同,它由一系列走向北北东方向排列的斜列断陷盆地组成,从北往南有大同盆地、忻定盆地、太原盆地、临汾盆地、运城盆地等组成。与此同时,随太行山的隆升,华北东部经历长期持续伸展作用,形成广阔的伸展裂陷与坳陷盆地,广泛接受沉积。尤其是黄河贯通以来,华北西部整体进入剥蚀状态,在华北东部形成了巨大的黄河冲积平原。研究和限定华北西部与东部之间的隆升-剥蚀-搬运-沉积过程,对认识我国华北地区晚新生代地表过程具有重要意义。运城盆地位于山西地堑系南部,盆内最深处新生界厚度超过5000 m。有意义的是,运城盆地北侧的孤山高于地表700余米,加上被新生代沉积所埋藏的300余米和本文获得的孤山岩体2.1-3.3 km的侵位深度,孤山隆升的高度至少达3.1-4.3 km。目前孤山完全由裸露的花岗闪长岩体组成,表明侵位时的前寒武纪及古生代、中生代围岩都已经剥蚀殆尽,这巨量的物质除了沉积在运城盆地本身之外,大部分应该被黄河搬运到华北平原沉积下来。我们需要思考的是,运城盆地什么时间开始发育?孤山的快速抬升发生在什么时间?巨大的侵蚀作用发生在什么时间?等等。因此,对运城盆地晚新生代构造-沉积以及北侧孤山剥蚀过程的研究,可以为探讨青藏高原构造域和太平洋构造域在华北地块中部的表现、山西地堑系的形成和发展,以及理解华北东、西部晚新生代的隆升-剥蚀-搬运-沉积过程具有重要意义。作者在博士论文工作期间参加中国地质调查局1∶50000《上郭幅(I49E005012)》和《运城县幅(I49E006012)》地质填图,对运城盆地及北侧峨眉台地地层、构造进行了系统的调查和研究。在此基础上,对运城盆地SG-1孔进行了地层序列划分研究,并进行了详细的沉积相分析和精细的磁性地层年代学研究,探讨了晚新生代盆地的沉积演化历史。进而通过多种环境代用指标,分析了构造和气候作用对盆地沉积过程的影响。并采用碎屑锆石物源示踪手段,讨论了盆地北缘地貌和水系演变过程。另一方面,通过磷灰石裂变径迹、(U-Th-Sm)/He测年等低温热年代学和宇宙成因核素年代学分析等手段对孤山的隆升剥蚀过程以及侵蚀速率进行了约束。主要取得以下的认识:1.SG-1孔磁性地层学研究表明,运城盆地最老时代为9.1 Ma,盆地很可能从这个时期开始发育,这恰恰是青藏运动序幕发生的时间,也即青藏高原隆升扩展的影响至少在9.1 Ma已经到达华北克拉通中部。另一方面,盆地沉积速率或沉积相在3.6 Ma、1.2 Ma和0.2 Ma发生显着变化,分别与青藏运动A幕、昆黄运动和共和运动发生的时间一致,显示青藏高原隆升和向北东向扩展一直控制盆地的发育演化过程,暗示着运城盆地、甚至山西地堑系及整个鄂尔多斯周缘地堑系的形成与青藏高原隆升和向北东方向的扩展有密切的成因关系。2.晚新生代盆地北部以河流沉积为主,构造活动和侵蚀基准面的变化对于盆地沉积环境演化起到了主导作用,SG-1孔岩心环境代用指标(粒度、色度、磁化率)表明气候作用对运城盆地的沉积有重要影响。碎屑锆石U-Pb年代学表明运城盆地北部沉积物主要来自于华北克拉通东部地块。由于伸展作用的持续进行,汾河在3.6 Ma左右形成,并在峨眉台地中部ND-1孔中揭露出相关沉积,0.72Ma汾河河道出现在峨眉台地东部,0.20 Ma左右汾河彻底退出运城盆地。3.孤山的隆升剥蚀过程是本文研究约束运城盆地形成与沉积演化发展过程的重要方面。本文采用幂函数关系角闪石全铝压力计,通过结晶压力计算出了孤山花岗闪长岩岩体的侵位深度在2.1-3.3km。现今孤山海拔高度1411 m,距离峨眉台地地表约700m,而峨眉台地新生界约300m,这意味着孤山花岗闪长岗岩体剥露抬升的最小高度在1000 m。加上侵位深度,中新生代运城地区地壳抬升幅度可能高达3.1-4.3 km。4.磷灰石的裂变径迹和(U-Th-Sm)/He揭示了孤山120-90 Ma和50-30 Ma两次快速隆升剥露事件,作者认为30 Ma左右孤山已经隆升到接近现在的高度。物源分析结果表明,孤山花岗闪长岩体可能在8.7 Ma之前就已经暴露出地表。ND-1孔在143.2 m深处(~3.6 Ma)发育富含孤山花岗闪长岩碎屑的沉积层,而在SG-1孔629.5m深处(~8.7 Ma)出现大量孤山花岗闪长岩的碎屑锆石年龄,表明孤山花岗闪长岩至少在8.7 Ma围岩已剥蚀殆尽,岩体直接暴露,考虑到这一时间与盆地形成时间接近,我们推测在运城盆地形成之前,孤山花岗闪长岩体便已经完全剥露出。5.运城盆地晚新生代沉积过程与孤山隆升剥蚀过程,也清楚地反映出鄂尔多斯盆地东缘运城盆地的形成与青藏高原的隆升及向东扩展有密切关系,而且盆地自形成之后的发展一直受制于青藏高原东北缘的构造作用。孤山花岗闪长岩体裸露于地表之上700 m,表明围岩及岩体在30~8.7 Ma期间,剥蚀厚度至少3.1-4.3 km,除运城盆地接收部分沉积外,大量的沉积物被搬运并沉积到华北黄河冲积平原,形成巨大的黄河冲积扇体。6.孤山岩体山顶至坡底剖面上的宇宙核素样品分析结果显示,孤山在39.5-26.5 ka以来经历了强烈的侵蚀过程,侵蚀速率(16.3-23.6 mm/ka)与青藏高原接近,这可能是由于晚更新世黄河贯通导致的区域侵蚀基准面的下降所致,区域地貌在该时期定型。

方正坤[9](2021)在《黄土高原东部上新世红粘土序列GDGTs组成与古气候研究》文中进行了进一步梳理近几年来,全球气候发生了很多有害变化,包括全球变暖、冰川融化、海平面上升等。这些气候的发生,对我们人类社会以及人类赖以生存的地球生态系统造成了严重的负面影响,因此,环境问题受到了广大学术界的重点关注。上新世(5.3-2.6Ma)是全球平均温度以及大气二氧化碳浓度,大陆构造和海洋深度与现代最为相似的一个持续温暖期,同时中国黄土高原上新世的古季风变化是上新世古环境气候主要组成之一,因此重建上新世的古气候演化特征、过程以及其驱动机制被认为对预测近未来全球变暖气候起到至关重要的作用。过去几十年,学者们主要通过磁化率与粒径、孢粉学、碳酸盐含量、铁元素等多项研究来解释东亚季风降水的变化。然而,可能由于不同气候替代指标对于温度和降水的敏感性不一样,或者一个指标同时被温度和降水影响等原因,所得结果往往存在差异,引起巨大争议。因此,本论文我们首次将甘油二烷基甘油四醚膜类脂物(Glycerol Dialkyl Glycerol Tetraethers,也称为GDGTs)在中国黄土高原石楼红粘土序列中应用,通过高效液相色谱-质谱(HPLC-MS)对红粘土中的GDGTs化合物进行检测,讨论GDGTs的组成分布特征,并且将之前学者们提出的,针对其他地质载体的GDGTs气候代用指标公式应用于石楼红粘土中,结合前人给出的石楼红粘土磁性年代学年龄,讨论MATmrs、Ri/b以及BIT公式的适用性,重建上新世研究区的古气候变化,并且综合讨论影响干湿程度变化的可能驱动机制。具体结果如下:(1)石楼红粘土剖面几乎检测到了所有的GDGTs化合物,其中细菌brGDGTs化合物含量更高,约为古菌iso GDGTs的1.84倍。古菌iso GDGTs中主要以cren和GDGT-0为主,GDGT-1次之,GDGT-2,GDGT-3以及cren’化合物含量较低。细菌brGDGTs包括Ⅰa、Ⅰb、Ⅰc、Ⅱa、Ⅱb、Ⅱc、Ⅲa、Ⅲb以及6-甲基的异构体Ⅱa’、Ⅱb’、Ⅱc’以及Ⅲa’、Ⅲb’化合物,其中以Ⅰa、Ⅰb、Ⅱa、Ⅱa’、Ⅱb、Ⅱb’、Ⅲa、Ⅲa’为主,其余化合物含量较低,Ⅲc、Ⅲc’低于检测线水平。(2)石楼红粘土剖面中不同GDGTs浓度随着时间的变化很强烈,而GDGTs化合物的组成与分布变化主要由于受大气温度、土壤p H以及含水量等因素控制的产GDGTs微生物群落的变化,说明合成GDGTs化合物的微生物对这些环境变化的敏感度极其强烈,支持了利用红粘土中GDGTs化合物重建古气候环境变化的使用性。(3)细菌brGDGTs以及古菌iso GDGTs浓度变化趋势相似,并且在上新世期间出现明显的阶段性:5.2~3.7Ma,两种GDGTs总浓度变化较大,含有多个高峰;3.7~3Ma,两种GDGTs总浓度稳定并且保持较低值;3~2.6Ma,两种GDGTs的总浓度出现极高值。(4)前人基于细菌brGDGTs所建立的所有温度代用公式中,经过评估,MATmrs公式可以被用在石楼红粘土GDGTs数据中。但是利用该代用指标恢复的上新世古环境变化,与上新世全球逐渐变冷趋势相反,不能被用来反映石楼地区古温度变化。本文以及前人在中国黄土高原中黄土-古土壤以及红粘土序列中,利用brGDGTs相关古温度代用公式获得的温度与同剖面磁化率变化非常一致,故brGDGTs相关古温度代用公式可能指示了其他环境因素,如古地磁变化。(5)根据Ri/b指标和BIT指标重建的石楼红粘土剖面上新世古气候变化情况,大致可以将上新世干湿变化分为以下四个阶段:第一个阶段从5.2到4.7Ma,研究区干旱潮湿环境变化频率很大;第二个阶段从4.7到3.7Ma,亚洲干旱程度的增强,出现了多次极端干旱事件;第三个阶段从3.7到2.9Ma,潮湿度增加并且保持稳定;最后一个阶段为2.9到2.6Ma,研究区再次出现干旱化。根据前人对石楼同一剖面的磁化率以及粒径重建的古环境对比,发现我们重建的该地区干湿变化能很好地对应上古东亚季风变化。(6)将Ri/b指标和BIT指标重建古干湿变化情况与同一剖面磁化率、粒度,黄土高原临近研究区其他红粘土剖面的磁化率、孢粉、蜗牛化石、Rb/Sr以及Zr/Rb数据、正构烷烃数据以及东亚季风指标进行比对,发现他们之间存在很好的一致性。同时,磁化率、粒度指标并没有指示出Ri/b指标指示出的极端干旱事件,说明Ri/b指标在恢复干旱事件时的精确性。(7)本文重建的研究区上新世古干旱/潮湿演化很好地对应上青藏高原快速抬升和巴拿马海峡闭合的构造活动事件,并符合全球冰量增加,同时与上新世暖期ENSO(El Ni?o-Southern Oscillation)现象影响的赤道太平洋温度差异改变很好匹配。其中,4.7~3.7Ma的极端干旱事件主要受控于ENSO事件,3.7Ma之后的湿度骤变主要由青藏高原迅速抬升影响,4.7Ma之后湿度增加也受到巴拿马海峡闭合的影响,并受控于全球冰量增加。

张晓[10](2021)在《加积型红土矿物组成特征记录的东亚季风演化》文中研究说明加积型红土是中亚热带典型的风尘堆积,形成于长期湿热的气候环境下,具有边沉积边风化的加积型特性,该加积型特性在一定程度上影响了环境信息的精准解读,有必要开展分粒级研究。因此,本文运用矿物学手段,以庐山北麓九江剖面(JL)为研究对象,选择JL剖面92个样品的<2μm和>10μm组分,分别展开粘土矿物和重矿物特征分析,并结合前期年代学、元素地球化学以及粒度等研究成果,试图揭示加积型红土所记录的东亚季风演化。初步得到以下结论:(1)JL剖面厚1846cm,剖面(1)~(5)层(1846~1400cm)为网纹红土,形成于~1.2Ma~0.44Ma;剖面(6)~(8)层(446~0cm)为黄棕色沉积,形成于0.44Ma以来。JL剖面不同地层单元粘土矿物组成基本一致,以伊利石、高岭石、蛭石为主,蒙脱石含量极少;另外,黄棕色沉积中还含有一定的羟基间层蛭石(HIV)。就粘土矿物相对含量而言,伊利石、高岭石、蛭石(+HIV)和蒙脱石分别为46.85%、36.90%、15.22%和1.04%;自剖面底部向上,伊利石相对含量呈逐渐增加,而高岭石则相反,表现出明显减小的趋势,蛭石(+HIV)呈现先减小后增加的趋势,可能与黄棕色土层含量变化有关。另外,JL剖面全岩化学风化指数CIA值与伊利石结晶度IC值和KI值呈现弱相关(R2均<0.5),与K/I相关性较强(R2=0.934),高岭石/伊利石(K/I)值可以作为指示风化成壤强度的指标,该指标自下而上逐渐减小,表明1.2Ma以来九江地区气候渐趋干冷。(2)重矿物组成以极稳定矿物和稳定矿物为主,其中钛铁矿、锆石、赤褐铁矿含量分别为32.35%、19.51%、19.32%,属优势矿物。白钛石、锐钛矿、金红石、电气石、绿帘石相对含量介于1~10%之间,其他矿物含量相对较少;另外,黄棕色沉积绿帘石、角闪石、辉石和石榴子石含量明显增加,分别为5.47%、0.75%、0.16%和0.7%,均高于网纹红土;黄棕色沉积和网纹红土矿物成熟度ZTR和风化系数W分别为65.79和89.82,0.28和0.02;通过对JL剖面重矿物种类及粉砂粒级元素地球化学主成分分析表明,JL剖面网纹红土层与黄棕色沉积重矿物种类含量、组合类型以及特征指数差异主要反映的是1.2Ma以来由气候变化引起的风化成壤强度变化,从而证实气候变化是控制重矿物组分的重要因素。(3)基于ESR年代学框架,对JL剖面粒度、磁化率、高岭石和伊利石含量、K/I指数、ZTR指数以及色度等进行了主成分分析,揭示出1.2Ma以来气候总体上呈持续干冷趋势,其气候变化经历了三个演化阶段:极端暖湿阶段(对应约0.8~1.2Ma)、冬季风增强阶段(对应约0.8~0.4Ma)和冬季风强烈增强阶段(对应约0.4Ma以来)。其中早更新世晚期冬季风增强使得南方开始出现广泛的风成堆积,可能与全球变冷以及北极冰量增加的双重驱动作用有关,是中国南方地区对中更新世转型的响应。中更新世中晚期以来,冬季风进一步增强,网纹发育减弱或者停止,同时发育有铁锰胶膜或者结核,可能与全球气候变化以及青藏高原强烈隆升有关。另外,网纹红土整体形成MIS13-21时期,东亚夏季风较为强盛,尤其是MIS13异常强盛的东亚夏季风,可能对南方网纹红土的形成至关重要。

二、青藏高原更新世黄土磁化率和磁性地层与高原重大气候变化事件(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、青藏高原更新世黄土磁化率和磁性地层与高原重大气候变化事件(论文提纲范文)

(1)川西高原黄土—古土壤序列环境磁学研究最新进展与展望(论文提纲范文)

1 川西黄土磁性矿物的浓度、种类和磁畴特征
    1. 1 磁性矿物浓度
    1. 2 磁性矿物的种类
    1. 3 磁性矿物的磁畴
2 川西高原黄土磁性的影响因素
    2. 1 物源
    2. 2 沉积环境
    2. 3 风化成壤
3 磁学参数的古气候意义
4 川西高原黄土未来研究展望
    (1)川西高原黄土的磁学性质
    (2)川西黄土磁性变化机制
    (3)川西黄土磁学参数的环境指示意义

(2)青藏高原新生代古高度研究:现状与展望(论文提纲范文)

1 古高度研究的方法及在青藏高原上的应用
    1.1 近南北向正断层
    1.2 钾质火山岩的喷发
    1.3 古环境演化指标
    1.4 古生物古高度计
    1.5 玄武岩气孔大小与分布高度计
    1.6 宇宙成因核素高度计
    1.7 稳定同位素高度计
    1.8 热年代学高度计
    1.9 其他古高度计
2 青藏高原古高度研究历史与现状
3 讨论
    3.1 地层年代学问题
    3.2 氧同位素和古生物古高度计结果的协调
    3.3 “以点带面”问题
    3.4 区域研究程度差异较大
    3.5 替代性指标的多解性
    3.6 古纬度的影响
    3.7 地质时期温度递减率的不确定性
    3.8 全球气候变化的影响
4 青藏高原新生代古高度研究展望与结论

(3)中更新世以来松嫩平原夏季风演化:来自哈尔滨黄土的磁化率、地球化学和总有机碳记录(论文提纲范文)

1 研究区概况
2 材料与方法
    2.1 研究材料
    2.2 研究方法
        (1) OSL和ESR测年
        (2)磁化率
        (3)元素地球化学
        (4) TOC
        (5)小波分析
3 结果与讨论
    3.1 年代学分析
    3.2 哈尔滨黄土—古土壤序列气候指标的变化
    3.3 中更新世以来松嫩平原东亚夏季风气候演化
    3.4 东亚夏季风强度的区域性对比
    3.5 松嫩平原黄土—古土壤序列气候驱动机制
4 结论

(4)门源盆地黄土记录的古环境演化(论文提纲范文)

中文摘要
Abstract
第一章 绪论
    1.1 研究意义及背景
        1.1.1 古气候的研究意义
        1.1.2 青藏高原的研究重要性
    1.2 研究现状
        1.2.1 多材料记录的环境变化
        1.2.2 青藏高原东北部年代学研究
        1.2.3 青藏高原东北部季风和西风研究
    1.3 拟解决的问题和研究内容
        1.3.1 拟解决的问题
        1.3.2 研究内容
    1.4 技术路线
第二章 区域概况与样品采集
    2.1 .区域自然地理状况
    2.2 .研究剖面概况
第三章 研究方法
    3.1 光释光样品年代测量
        3.1.1 光释光原理
        3.1.2 释光样品处理
        3.1.3 剂量率测定
        3.1.4 纯度检验和De测试
        3.1.5 OSL流程
    3.2 粒度参数指标
        3.2.1 粒度的沉积学意义
        3.2.2 粒度的测试
    3.3 磁化率参数指标
        3.3.1 磁学的沉积学意义
        3.3.2 磁化率的测试
    3.4 色度参数指标
        3.4.1 色度的沉积学意义
        3.4.2 色度的测试
    3.5 元素地球化学指标
        3.5.1 元素地球化学指标的沉积学意义
        3.5.2 元素地球化学的测试
    3.6 土壤有机碳指标
        3.6.1 土壤有机碳指标的沉积学意义
        3.6.2 土壤有机碳的测试
    3.7 碳酸盐指标
        3.7.1 碳酸盐指标的沉积学意义
        3.7.2 碳酸盐的测试
    3.8 软件使用
第四章 实验结果
    4.1 OSL结果
        4.1.1 剂量率分析
        4.1.2 石英OSL释光特征分析
        4.1.3 年代结果
    4.2 粒度参数结果
        4.2.1 粒度组成特征
        4.2.2 沉积判别
        4.2.3 沉积组成特征
        4.2.4 粒度参数特征
        4.2.5 沉积动力特征
        4.2.6 粒度敏感因子提取
    4.3 磁化率参数结果
    4.4 色度参数结果
    4.5 元素地球化学
        4.5.1 常量元素
        4.5.2 微量元素
        4.5.3 稀土元素
    4.6 有机碳结果
    4.7 碳酸盐结果
第五章 分析与讨论
    5.1 门源盆地各指标相关分析
    5.2 门源盆地的时间序列
    5.3 门源盆地39 ka以来的环境变化过程
    5.4 门源盆地黄土动力学分析
    5.5 青藏高原东北部不同地区气候变化异同
    5.6 青藏高原东北部环境变化的驱动因素
第六章 结论与展望
    6.1 结论
    6.2 展望
参考文献
致谢
硕士期间发表的论文

(5)基于地貌学方法分析太行山南段第四纪构造活动特征(论文提纲范文)

摘要
Abstract
第一章 引言
    1.1 研究背景
    1.2 研究现状与问题
        1.2.1 河流阶地在构造隆升中的研究现状
        1.2.2 太行山隆升的研究现状
        1.2.3 晋获断裂中南段研究现状
    1.3 研究内容、方法与技术路线
        1.3.1 太行山第四纪隆升研究
        1.3.2 断裂活动特征
    1.4 主要工作量与主要成果
        1.4.1 主要工作量
        1.4.2 主要成果
第二章 区域概况
    2.1 自然地理概况
        2.1.1 地理位置及交通概况
        2.1.2 气候水文概况
        2.1.3 区域地貌特征
    2.2 区域地质概况
        2.2.1 区域构造演化概况
        2.2.2 区域地层特征
        2.2.3 区域主要活动断裂与地震活动
第三章 宏观地貌与构造
    3.1 地形地貌参数
    3.2 河流面积-高程积分
    3.3 区域条带状剖面
    3.4 小结
第四章 太行山南河流阶地序列及发育特征
    4.1 太行山南段河流阶地发育特征
        4.1.1 漳河阶地发育特征
        4.1.2 丹河阶地
        4.1.3 沁河阶地
        4.1.4 露水河阶地
        4.1.5 淇河和淅水河阶地
        4.1.6 其他河流阶地
    4.2 河流阶地年龄
    4.3 河流阶地形成原因
    4.4 阶地与南太行山隆升探讨
        4.4.1 太行山南河流下切速率
        4.4.2 南太行山隆升幅度分析
        4.4.3 隆升原因的探讨
    4.5 小结
第五章 晋获断裂中、南段活动特征
    5.1 遥感数据的来源、处理及解译
    5.2 长治断裂活动特征
        5.2.1 遥感解译特征
        5.2.2 地貌地质特征
        5.2.3 活动性特征
    5.3 晋城断裂
        5.3.1 遥感影像特征
        5.3.2 地貌地质特征
        5.3.3 活动性特征
    5.4 小结
第六章 结论与存在的问题
    6.1 主要结论
    6.2 存在问题
参考文献
致谢
作者简历

(6)青藏高原东北缘晚更新世以来环境变化研究进展(论文提纲范文)

1 引言
2 青藏高原东北缘晚更新世以来沉积记录及年代
3 青藏高原东北缘环境变化研究中代用指标选择的发展进程
4 青藏高原东北缘气候变化特征
5 青藏高原东北缘环境变化的区域一致性
6 结语与展望

(7)柴达木盆地大浪滩地区上新世以来的碳氧同位素记录及古环境研究(论文提纲范文)

摘要
Abstract
第一章 绪论
    1.1 研究背景及意义
    1.2 项目来源
    1.3 国内外研究进展
        1.3.1 柴达木盆地古气候古环境研究进展
        1.3.2 碳酸盐碳氧同位素在湖泊沉积古环境中的研究进展
    1.4 研究内容和技术路线
        1.4.1 研究内容
        1.4.2 技术路线
第二章 研究区概况
    2.1 柴达木盆地的自然地理特征
        2.1.1 地理位置
        2.1.2 地质地貌特征
        2.1.3 气候与水文
        2.1.4 土壤与植被
    2.2 大浪滩地区基本概况与钻孔位置
        2.2.1 大浪滩地区的自然地理概况
        2.2.2 黑ZK-01钻孔的地理位置
第三章 大浪滩地区黑ZK-01钻孔年代框架的建立及沉积序列划分
    3.1 年代框架的建立
    3.2 钻孔岩性地层及沉积序列的划分
第四章 沉积物碳酸盐碳、氧同位素分析
    4.1 碳氧同位素分析原理
    4.2 实验测试方法
    4.3 碳酸盐碳、氧同位素的古环境指示意义
        4.3.1 碳同位素
        4.3.2 氧同位素
    4.4 实验结果
第五章 大浪滩地区上新世至中更新世的古气候古环境重建
    5.1 大浪滩地区上新世至中更新世的古气候古环境重建
    5.2 与柴达木盆地大浪滩地区其他钻孔记录的气候变化对比
    5.3 与长时间尺度典型气候变化记录的对比
    5.4 上新世以来大浪滩地区气候环境变化与青藏高原隆升的响应
第六章 结论
    6.1 主要结论
    6.2 存在的问题与展望
参考文献
作者简介
攻读硕士学位期间发表的论文和获奖成果
致谢

(8)运城盆地及北侧孤山晚新生代构造-沉积与隆升-剥蚀过程研究(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 选题背景和项目依托
    1.2 山西地堑系的研究现状
    1.3 关键科学问题
    1.4 论文选题、研究内容及研究方法
    1.5 论文实际工作量
    1.6 主要创新点
第二章 区域地质特征与运城盆地地质特征
    2.1 鄂尔多斯周缘地堑系
    2.2 山西地堑系
    2.3 运城盆地
第三章 运城盆地北侧孤山隆升剥露历史与侵蚀速率研究
    3.1 孤山岩体岩石学特征
    3.2 孤山岩体侵位深度
    3.3 孤山岩体低温热年代学研究
    3.4 孤山岩体侵蚀速率研究
第四章 运城盆地晚新生代磁性地层学与沉积相分析
    4.1 运城盆地SG-1 孔沉积序列和沉积相分析
    4.2 运城盆地晚新生代磁性地层学
    4.3 运城盆地SG-1 孔环境代用指标记录
第五章 运城盆地晚新生代沉积物源分析
    5.1 碎屑锆石样品采集及测试方法
    5.2 碎屑锆石U-Pb年代学结果
    5.3 运城盆地晚新生代沉积物源分析讨论
第六章 运城盆地构造-沉积及北侧孤山隆升剥蚀过程讨论
    6.1 孤山晚新生代地貌的形成
    6.2 运城盆地北部晚新生代沉积环境演化
    6.3 运城盆地晚新生代构造-沉积及北侧孤山隆升剥蚀过程讨论
结论
存在的问题和展望
参考文献
致谢
个人简历、攻读学位期间的研究成果及公开发表的学术论文

(9)黄土高原东部上新世红粘土序列GDGTs组成与古气候研究(论文提纲范文)

摘要
Abstract
第一章 绪论
    1.1 选题背景及研究意义
    1.2 中国黄土高原红粘土序列研究进展
        1.2.1 红粘土序列特点及成因
        1.2.2 红粘土序列年代学研究
        1.2.3 红粘土序列各种替代指标研究
    1.3 生物标志化合物在古气候重建中的应用
        1.3.1 甘油二烷基甘油四醚膜类脂物(GDGTs)
        1.3.2 GDGTs应用指标研究进展
        1.3.3 GDGTs替代指标在黄土高原黄土-古土壤序列中的应用
    1.4 存在问题以及研究思路
        1.4.1 存在问题
        1.4.2 研究思路以及工作量
第二章 研究区域概况与实验方法
    2.1 研究区域概况
        2.1.1 研究区自然地理概况
        2.1.2 研究区域地质背景
        2.1.3 石楼剖面概况与采样
        2.1.4 石楼剖面磁性地层学年代模型
    2.2 实验方法
        2.2.1 有机化合物的萃取
        2.2.2 GDGTs的测试及分析
第三章 黄土高原东部上新世红粘土四醚膜类脂物组成与分布特征
    3.1 石楼红粘土总GDGTs组成及其分布序列
    3.2 研究区不同GDGTs组成及其分布特征
        3.2.1 石楼红粘土古菌isoGDGTs组成及分布特征
        3.2.2 红粘土细菌brGDGTs组成及分布特征
    3.3 本章总结
第四章 黄土高原东部上新世红粘土四醚膜类脂物记录的古温度与干旱化
    4.1 与GDGTs相关的古温度代用指标计算
        4.1.1 古温度代用指标的计算及适用性讨论
        4.1.2 MAT_(mrs)影响因素和可能指示意义的假设
    4.2 古水文变化
        4.2.1 干旱化指标R_(i/b)变化序列
        4.2.2 BIT指数
        4.2.3 R_(i/b)指标和BIT指标指示的水文/干旱事件
    4.3 本章总结
第五章 黄土高原东部上新世干旱化演变以及驱动机制
    5.1 研究区上新世期间干旱化及季风演变
    5.2 研究区上新世干旱化的可能驱动机制
    5.3 本章总结
第六章 结论、不足与展望
    6.1 结论
    6.2 不足与展望
参考文献
攻读硕士期间发表的文章
致谢

(10)加积型红土矿物组成特征记录的东亚季风演化(论文提纲范文)

摘要
Abstract
第一章 绪论
    1.1 选题背景
    1.2 加积型红土年代学及古环境研究
        1.2.1 年代学研究
        1.2.2 古环境演化研究
    1.3 矿物学在古气候重建中的应用
    1.4 研究内容与创新点及技术路线
        1.4.1 研究内容
        1.4.2 主要创新点
        1.4.3 技术路线
第二章 研究剖面与研究方法
    2.1 研究剖面与样品选取
    2.2 实验方法
        2.2.1 粘粒组分提取
        2.2.2 粘土矿物定向片的制定与测试
        2.2.3 重矿物分离与鉴定
第三章 粘土矿物的定性及半定量分析
    3.1 X射线衍射分析(XRD)的基本原理
    3.2 粘土矿物的定性分析
    3.3 粘土矿物的半定量化分析
        3.3.1 粘土矿物半定量的计算方法
        3.3.2 粘土矿物的相对含量
    3.4 伊利石结晶度及K/I比值
    3.5 本章小结
第四章 重矿物组成特征及其环境意义
    4.1 种类及含量
    4.2 组合特征及特征指数
    4.3 重矿物组分控制因素
    4.4 本章小结
第五章 JL剖面矿物组成特征记录的东亚季风的演化
    5.1 主成分分析结果及其古环境解释
        5.1.1 主成分分析结果
        5.1.2 主成分PCA F1 的古环境指义
        5.1.3 古气候代用指标记录及特征
    5.2 JL剖面矿物组成对东亚冬季风演化的指示
        5.2.1 早更新世晚期-中更新世早期
        5.2.2 中更新世晚期以来
    5.3 网纹红土形成与东亚夏季风
    5.4 本章小结
第六章 结论与展望
    6.1 主要结论
    6.2 问题与展望
参考文献
致谢
攻读学位期间取得的研究成果

四、青藏高原更新世黄土磁化率和磁性地层与高原重大气候变化事件(论文参考文献)

  • [1]川西高原黄土—古土壤序列环境磁学研究最新进展与展望[J]. 陈梓炫,杨军怀,王树源,吕镔,杨胜利,夏敦胜. 山地学报, 2021(06)
  • [2]青藏高原新生代古高度研究:现状与展望[J]. 李乐意,常宏,关冲,陶亚玲,沈俊杰,秦秀玲,权春艳,常小红. 地质论评, 2021(05)
  • [3]中更新世以来松嫩平原夏季风演化:来自哈尔滨黄土的磁化率、地球化学和总有机碳记录[J]. 刘硕,迟云平,郝冬梅,谢远云,康春国,吴鹏. 地质科学, 2021(04)
  • [4]门源盆地黄土记录的古环境演化[D]. 史运坤. 青海师范大学, 2021(12)
  • [5]基于地貌学方法分析太行山南段第四纪构造活动特征[D]. 张哲. 中国地震局地震预测研究所, 2021(01)
  • [6]青藏高原东北缘晚更新世以来环境变化研究进展[J]. 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 地球科学进展, 2021(07)
  • [7]柴达木盆地大浪滩地区上新世以来的碳氧同位素记录及古环境研究[D]. 苗青. 河北地质大学, 2021(07)
  • [8]运城盆地及北侧孤山晚新生代构造-沉积与隆升-剥蚀过程研究[D]. 闫纪元. 中国地质科学院, 2021
  • [9]黄土高原东部上新世红粘土序列GDGTs组成与古气候研究[D]. 方正坤. 西北大学, 2021
  • [10]加积型红土矿物组成特征记录的东亚季风演化[D]. 张晓. 浙江师范大学, 2021

标签:;  ;  ;  ;  ;  

青藏高原更新世黄土磁化率与磁地层与主要高原气候变化事件
下载Doc文档

猜你喜欢